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Abstract Ischemia-reperfusion injury limits the survival of muscle involved in tissue trauma or transfers during micro-
surgical reconstruction. Priming stresses such as ischemic preconditioning or mild hyperthermia have frequently been
associated with improved survival of ischemic-reperfused cardiac muscle, such protection coinciding with induction of
the stress-related heat shock protein 70 (Hsp70). Little is known about the response of skeletal muscle to priming
stresses. This review summarizes the current knowledge on the use of priming stresses as protective strategies against
the consequences of ischemia-reperfusion in cardiac and skeletal muscle and the potential role of Hsp70.

Ischemia-reperfusion injury is a severe limitation in the
survival of tissues involved in reconstructive microsur-
gery, and skeletal muscle is particularly susceptible (Ker-
rigan and Stotland 1993; Grace 1994). Studies in cardiac
muscle have shown that small priming episodes of stress,
such as ischemic preconditioning or mild hyperthermia,
are followed by an increase in the expression of the stress-
related heat shock protein 70 (Hsp70) and often correlate
with improved survival of ischemic-reperfused muscle
(Dillman et al 1986; Currie et al 1988, 1993; Currie and
Tanguay 1991; Knowlton et al 1991; Donnelly et al 1992;
Yellon et al 1992; Marber et al 1993, 1994, 1995; Yang et
al 1996). In other studies in cardiac muscle, the induction
of Hsp70 after such priming stresses did not necessarily
correlate with protection (Donnelly et al 1992; Tanaka et
al 1994; Saganek et al 1997; Cornelussen et al 1998; Qian
et al 1998, 1999; Xi et al 1998; Lille et al 1999). For skeletal
muscle, investigations into the value of priming stresses
as protective strategies against delayed ischemia-reper-
fusion injury are less common, and both protection and
lack of protection have been reported (Garramone et al
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1992; Carroll et al 1997; Pudupakkam et al 1998; Lille et
al 1999; Lepore et al 2000; Lepore and Morrison 2000).
The current knowledge on the role of priming stresses
and the induced expression of Hsp70 in protection from
ischemia-reperfusion injury in cardiac and skeletal mus-
cle is summarized in this review.

The benefits of the stress response in surgery were first
observed by Hans Selye, who reported that a slight sur-
gical injury before surgical trauma reduced tissue death
and inflammation (Seyle 1936). In later studies, Weinberg
and colleagues found that the elevation of a piece of skin
tissue on its vascular supply (an island flap) 24 hours
before an ischemic insult increased the long-term survival
of the tissue (Weinberg et al 1985). If the elevation was
done earlier or later than 24 hours, the protective effect
was diminished (Angel et al 1989). A biochemical study
of this model showed that the improved survival in pre-
viously elevated tissue was accompanied by a preserva-
tion of cellular energy levels, a decrease in vascular
thromboxane levels, and a decrease in tissue edema (An-
gel et al 1991). Subsequent studies implicated Hsp70 as
playing a protective role in the delayed phase of protec-
tion from ischemia-reperfusion after a priming injury.
Hsp70 is one of many proteins inducible in the stress
response (Lindquist and Craig 1988; Welch 1990) and is
known be involved in the prevention and repair of pro-
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tein damage both in stressed and unstressed cells, often
acting in concert with other cochaperone proteins (Ge-
thing and Sambrook 1992; Welch 1992; Craig 1993; Hartl
1996; Anderson 1998).

One of the earliest studies relating Hsp70 induction
with protection from ischemia-reperfusion was that by
Currie and colleagues, who used whole body hyperther-
mia at 428C as a priming stress to induce Hsp70 (Currie
et al 1988). The expression of Hsp70 in rat cardiac muscle
detected at 24 hours after heat stress correlated with im-
proved muscle function and a decrease in creatine kinase
release after ischemia-reperfusion (Currie et al 1988).
Other in vivo studies followed, providing further evi-
dence of improved cardiac muscle survival and function
(Currie et al 1989, 1993; Currie and Tanguay 1991; Don-
nelly et al 1992; Yellon et al 1992; Gowda et al 1998). The
degree of Hsp70 induction has also been correlated with
the degree of protection from myocardial necrosis after
ischemia-reperfusion (Hutter et al 1994; Marber et al
1994). In ischemia-reperfusion studies involving the
transplantation of organs such as the kidney and liver,
increased survival has been reported for organs that ex-
pressed Hsp70 following mild whole body hyperthermia
of the donor animal (Kaneko et al 1993; Perdrizet et al
1993).

For skeletal muscle, the induced expression of Hsp70
following mild whole body hyperthermia has been cor-
related with a preservation of muscle phosphocreatine
levels and a reduction of mitochondrial injury during is-
chemia in a rat hind limb model (Garramone et al 1992).
Prior mild heat stress in a rat latissimus dorsi ischemia-
reperfusion model resulted in a 15% reduction of skeletal
muscle necrosis (Carroll et al 1997). Recently, we have
shown that mild hyperthermia of rat hind limb skeletal
muscle applied at 24 hours before ischemia-reperfusion
markedly induced Hsp70 expression and improved long-
term muscle survival by 7.8-fold (Lepore et al 2000). In
vitro experiments suggested that the protection from is-
chemia-reperfusion observed in heat-stressed muscles in
vivo was unlikely to be explained by the expression of
Hsp70 alone. Mature skeletal muscle myocytes derived
from precursor myoblasts that had previously been trans-
duced with the complementary DNA encoding Hsp70
were not protected from mediators involved in ischemia-
reperfusion injury despite retaining expression of Hsp70
(Lepore et al 2000). It appeared that a process other than
or more complex than expression of Hsp70 was involved
in the protection observed in vivo. To identify definitively
whether Hsp70 has a role in protection from ischemia-
reperfusion injury to skeletal muscle in vivo, experiments
in Hsp70 transgenic mice would be required. For cardiac
muscle, studies in these mice have shown improved mus-
cle survival after short-term ischemia-reperfusion, but
survival after long-term reperfusion has not yet been in-

vestigated (Dillman and Mestril 1995; Marber et al 1995;
Plumier et al 1995; Hutter et al 1996; Trost et al 1998).

There are several studies in which the expression of
Hsp70 following ischemic preconditioning (Donnelly et
al 1992; Tanaka et al 1994; Qian et al 1999; Lepore and
Morrison 2000) or mild hyperthermia (Saganek et al 1997;
Xi et al 1998; Lille et al 1999) was not followed by pro-
tection from ischemia-reperfusion injury. The lack of pro-
tection by the priming injury was not necessarily ex-
plained by the possibility of an ‘‘irreversible’’ priming or
secondary injury. In our laboratory, heat stress (Lepore et
al 2000) but not ischemic preconditioning (Lepore and
Morrison 2000) was protective against ischemia-reperfu-
sion in skeletal muscle, despite the mild and ‘‘reversible’’
level of injury produced by ischemic preconditioning it-
self. In a cardiac study by Qian et al, prior heat stress was
not protective against ischemia-reperfusion if the ische-
mic insult was applied when Hsp70 levels were at their
peak (between 4 and 12 hours after heat stress); however,
if the same ischemic insult was applied when Hsp70 lev-
els were not as high (24 hours after heat stress), then pro-
tection was observed (Qian et al 1998). A similar pattern
was reported by others (Cornelussen et al 1998). Taken
together, these studies support the idea that protection
against ischemia-reperfusion injury conferred by priming
stresses requires the triggering or involvement of a factor
other than, or in addition to, Hsp70.

Priming stresses can induce a variety of stress-related
proteins. Examples of these proteins are manganese-su-
peroxide dismutase, catalase, heme-oxygenase, aB-crys-
tallin protein, glutathione peroxidase, the proto-onco-
genes, c-fos and c-myc, and several different Hsps (Currie
and Tanguay 1991; Welch 1992; Das et al 1993; Hoshida
et al 1993; Inaguma et al 1993; Heads et al 1995; Zhou et
al 1996; Nayeem et al 1997; Yamashita et al 1997, 1998;
Benjamin and McMillan 1998; Sakamoto et al 1998; Trost
et al 1998). Some studies provide evidence of a link be-
tween the protective effect of heat stress in cardiac muscle
and the induction of either catalase or manganese-super-
oxide dismutase. Inhibition of either of these proteins pre-
vented the protective effect against ischemia-reperfusion
injury associated with Hsp70 induction (Karmazyn et al
1990; Currie and Tanguay 1991; Yamashita et al 1997).

In conclusion, there are numerous studies reporting the
beneficial effects of priming stresses for ischemia-reper-
fusion to cardiac and skeletal muscle. However, the rela-
tive importance of Hsp70 in the protection conferred by
priming stresses remains to be elucidated, since it is ev-
ident that proteins other than or in addition to Hsp70
play a key role in protection.
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